ChipFind - документация

Электронный компонент: M27C512-70F3

Скачать:  PDF   ZIP

Document Outline

1/22
November 2004
M27C512
512 Kbit (64K x8) UV EPROM and OTP EPROM
FEATURES SUMMARY
5V 10% SUPPLY VOLTAGE in READ
OPERATION
ACCESS TIME: 45ns
LOW POWER "CMOS" CONSUMPTION:
Active Current 30mA
Standby Current 100A
PROGRAMMING VOLTAGE: 12.75V 0.25V
PROGRAMMING TIMES of AROUND 6sec.
ELECTRONIC SIGNATURE
Manufacturer Code: 20h
Device Code: 3Dh
PACKAGES
Lead-Free Versions
Figure 1. Packages
1
28
FDIP28W (F)
28
1
PDIP28 (B)
PLCC32 (C)
TSOP28 (N)
8 x 13.4 mm
M27C512
2/22
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 4. LCC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Two Line Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
System Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PRESTO IIB Programming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Program Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Program Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ERASURE OPERATION (APPLIES FOR UV EPROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 7. Testing Input Output Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 8. AC Testing Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 6. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 7. Read Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 8. Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 9. Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 9. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 10. Programming Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 11. Margin Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10.Margin Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 12. Programming Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 11.Programming and Verify Modes AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3/22
M27C512
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12.FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline. . . . . . . . . . . . 16
Table 13. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data . . . . 16
Figure 13.PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline . . . . . . . . . . . . . . . . . . . . 17
Table 14. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data . . . . . . . . . . . . 17
Figure 14.PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline . . . . . . . . . . . . . . . . . 18
Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data . . . . . . . . . . 18
Figure 15.TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Outline . . . . . . . . 19
Table 16. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Mechanical Data 19
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 17. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 18. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
M27C512
4/22
SUMMARY DESCRIPTION
The M27C512 is a 512 Kbit EPROM offered in the
two ranges UV (ultra violet erase) and OTP (one
time programmable). It is ideally suited for applica-
tions where fast turn-around and pattern experi-
mentation are important requirements and is
organized as 65536 by 8 bits.
The FDIP28W (window ceramic frit-seal package)
has transparent lid which allows the user to ex-
pose the chip to ultraviolet light to erase the bit pat-
tern. A new pattern can then be written to the
device by following the programming procedure.
For applications where the content is programmed
only one time and erasure is not required, the
M27C512 is offered in PDIP28, PLCC32 and
TSOP28 (8 x 13.4 mm) packages.
In addition to the standard versions, the packages
are also available in Lead-free versions, in compli-
ance with JEDEC Std J-STD-020B, the ST ECO-
PACK 7191395 Specification, and the RoHS
(Restriction of Hazardous Substances) directive.
Figure 2. Logic Diagram
Table 1. Signal Names
A0-A15
Address Inputs
Q0-Q7
Data Outputs
E
Chip Enable
GV
PP
Output Enable / Program Supply
V
CC
Supply Voltage
V
SS
Ground
NC
Not Connected Internally
DU
Don't Use
AI00761B
16
Q0-Q7
VCC
M27C512
GVPP
VSS
8
A0-A15
E
5/22
M27C512
Figure 3. DIP Connections
Figure 4. LCC Connections
Figure 5. TSOP Connections
A1
A0
Q0
A7
A4
A3
A2
A6
A5
A13
A10
A8
A9
Q7
A14
A11
GVPP
E
Q5
Q1
Q2
Q3
VSS
Q4
Q6
A12
A15
VCC
AI00762
M27C512
8
1
2
3
4
5
6
7
9
10
11
12
13
14
16
15
28
27
26
25
24
23
22
21
20
19
18
17
AI00763
A13
A8
A10
Q4
17
A0
NC
Q0
Q1
Q2
DU
Q3
A6
A3
A2
A1
A5
A4
9
A14
A9
1
A15
A11
Q6
A7
Q7
32
DU
V
CC
M27C512
A12
NC
Q5
GVPP
E
25
V
SS
A1
A0
Q0
A5
A2
A4
A3
A9
A11
Q7
A8
GVPP
E
Q5
Q1
Q2
Q3
Q4
Q6
A13
A14
A12
A6
A15
VCC
A7
AI00764B
M27C512
28
1
22
7
8
14
15
21
VSS
A10
M27C512
6/22
DEVICE OPERATION
The modes of operations of the M27C512 are list-
ed in the Operating Modes table. A single power
supply is required in the read mode. All inputs are
TTL levels except for GV
PP
and 12V on A9 for
Electronic Signature.
Read Mode
The M27C512 has two control functions, both of
which must be logically active in order to obtain
data at the outputs. Chip Enable (E) is the power
control and should be used for device selection.
Output Enable (G) is the output control and should
be used to gate data to the output pins, indepen-
dent of device selection. Assuming that the ad-
dresses are stable, the address access time
(t
AVQV
) is equal to the delay from E to output
(t
ELQV
). Data is available at the output after a delay
of t
GLQV
from the falling edge of G, assuming that
E has been low and the addresses have been sta-
ble for at least t
AVQV
-t
GLQV
.
Standby Mode
The M27C512 has a standby mode which reduces
the active current from 30mA to 100A The
M27C512 is placed in the standby mode by apply-
ing a CMOS high signal to the E input. When in the
standby mode, the outputs are in a high imped-
ance state, independent of the GV
PP
input.
Table 2. Operating Modes
Note: X = V
IH
or V
IL
, V
ID
= 12V 0.5V.
Table 3. Electronic Signature
Two Line Output Control
Because EPROMs are usually used in larger
memory arrays, the product features a 2 line con-
trol function which accommodates the use of mul-
tiple memory connection. The two line control
function allows:
a.
the lowest possible memory power
dissipation,
b.
complete assurance that output bus
contention will not occur.
For the most efficient use of these two control
lines, E should be decoded and used as the prima-
ry device selecting function, while G should be
made a common connection to all devices in the
array and connected to the READ line from the
system control bus. This ensures that all deselect-
ed memory devices are in their low power standby
mode and that the output pins are only active
when data is required from a particular memory
device.
System Considerations
The power switching characteristics of Advanced
CMOS EPROMs require careful decoupling of the
devices. The supply current, I
CC
, has three seg-
ments that are of interest to the system designer:
the standby current level, the active current level,
and transient current peaks that are produced by
the falling and rising edges of E. The magnitude of
the transient current peaks is dependent on the
capacitive and inductive loading of the device at
the output. The associated transient voltage peaks
can be suppressed by complying with the two line
output control and by properly selected decoupling
capacitors. It is recommended that a 0.1F ceram-
ic capacitor be used on every device between V
CC
and V
SS
. This should be a high frequency capaci-
tor of low inherent inductance and should be
placed as close to the device as possible. In addi-
Mode
E
GV
PP
A9
Q7-Q0
Read
V
IL
V
IL
X
Data Out
Output Disable
V
IL
V
IH
X
Hi-Z
Program
V
IL
Pulse
V
PP
X
Data In
Program Inhibit
V
IH
V
PP
X
Hi-Z
Standby
V
IH
X
X
Hi-Z
Electronic Signature
V
IL
V
IL
V
ID
Codes
Identifier
A0
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
Hex Data
Manufacturer's Code
V
IL
0
0
1
0
0
0
0
0
20h
Device Code
V
IH
0
0
1
1
1
1
0
1
3Dh
7/22
M27C512
tion, a 4.7F bulk electrolytic capacitor should be
used between V
CC
and V
SS
for every eight devic-
es. The bulk capacitor should be located near the
power supply connection point.The purpose of the
bulk capacitor is to overcome the voltage drop
caused by the inductive effects of PCB traces.
Figure 6. Programming Flowchart
Programming
When delivered (and after each erasure for UV
EPROM), all bits of the M27C512 are in the '1'
state. Data is introduced by selectively program-
ming '0's into the desired bit locations. Although
only '0's will be programmed, both '1's and '0's can
be present in the data word. The only way to
change a '0' to a '1' is by die exposure to ultraviolet
light (UV EPROM). The M27C512 is in the pro-
gramming mode when V
PP
input is at 12.75V and
E is pulsed to V
IL
. The data to be programmed is
applied to 8 bits in parallel to the data output pins.
The levels required for the address and data in-
puts are TTL. V
CC
is specified to be 6.25V
0.25V. The M27C512 can use PRESTO IIB Pro-
gramming Algorithm that drastically reduces the
programming time (typically less than 6 seconds).
Nevertheless to achieve compatibility with all pro-
gramming equipments, PRESTO Programming
Algorithm can be used as well.
PRESTO IIB Programming Algorithm
PRESTO IIB Programming Algorithm allows the
whole array to be programmed with a guaranteed
margin, in a typical time of 6.5 seconds. This can
be achieved with STMicroelectronics M27C512
due to several design innovations described in the
M27C512 datasheet to improve programming effi-
ciency and to provide adequate margin for reliabil-
ity. Before starting the programming the internal
MARGIN MODE circuit is set in order to guarantee
that each cell is programmed with enough margin.
Then a sequence of 100s program pulses are ap-
plied to each byte until a correct verify occurs. No
overprogram pulses are applied since the verify in
MARGIN MODE provides the necessary margin.
Program Inhibit
Programming of multiple M27C512s in parallel
with different data is also easily accomplished. Ex-
cept for E, all like inputs including GV
PP
of the par-
allel M27C512 may be common. A TTL low level
pulse applied to a M27C512's E input, with V
PP
at
12.75V, will program that M27C512. A high level E
input inhibits the other M27C512s from being pro-
grammed.
Program Verify
A verify (read) should be performed on the pro-
grammed bits to determine that they were correct-
ly programmed. The verify is accomplished with G
at V
IL
. Data should be verified with t
ELQV
after the
falling edge of E.
Electronic Signature
The Electronic Signature (ES) mode allows the
reading out of a binary code from an EPROM that
will identify its manufacturer and type. This mode
is intended for use by programming equipment to
automatically match the device to be programmed
with its corresponding programming algorithm.
The ES mode is functional in the 25C 5C am-
bient temperature range that is required when pro-
gramming the M27C512. To activate the ES
mode, the programming equipment must force
11.5V to 12.5V on address line A9 of the
M27C512. Two identifier bytes may then be se-
quenced from the device outputs by toggling ad-
dress line A0 from V
IL
to V
IH
. All other address
lines must be held at V
IL
during Electronic Signa-
ture mode. Byte 0 (A0 = V
IL
) represents the man-
ufacturer code and byte 1 (A0 = V
IH
) the device
identifier code. For the STMicroelectronics
M27C512, these two identifier bytes are given in
Table 3.
and can be read-out on outputs Q7 to Q0.
AI00738B
n = 0
Last
Addr
VERIFY
E = 100
s Pulse
++n
= 25
++ Addr
VCC = 6.25V, VPP = 12.75V
FAIL
CHECK ALL BYTES
1st: VCC = 6V
2nd: VCC = 4.2V
YES
NO
YES
NO
YES
NO
SET MARGIN MODE
RESET MARGIN MODE
M27C512
8/22
ERASURE OPERATION (APPLIES FOR UV EPROM)
The erasure characteristics of the M27C512 is
such that erasure begins when the cells are ex-
posed to light with wavelengths shorter than ap-
proximately 4000 . It should be noted that
sunlight and some type of fluorescent lamps have
wavelengths in the 3000-4000 range.
Research shows that constant exposure to room
level fluorescent lighting could erase a typical
M27C512 in about 3 years, while it would take ap-
proximately 1 week to cause erasure when ex-
posed to direct sunlight. If the M27C512 is to be
exposed to these types of lighting conditions for
extended periods of time, it is suggested that
opaque labels be put over the M27C512 window to
prevent unintentional erasure. The recommended
erasure procedure for the M27C512 is exposure to
short wave ultraviolet light which has wavelength
2537 . The integrated dose (i.e. UV intensity x
exposure time) for erasure should be a minimum
of 15 W-sec/cm
2
. The erasure time with this dos-
age is approximately 15 to 20 minutes using an ul-
traviolet lamp with 12000 W/cm
2
power rating.
The M27C512 should be placed within 2.5 cm (1
inch) of the lamp tubes during the erasure. Some
lamps have a filter on their tubes which should be
removed before erasure.
9/22
M27C512
MAXIMUM RATING
Stressing the device outside the ratings listed in
Table 4.
may cause permanent damage to the de-
vice. These are stress ratings only, and operation
of the device at these, or any other conditions out-
side those indicated in the Operating sections of
this specification, is not implied. Exposure to Ab-
solute Maximum Rating conditions for extended
periods may affect device reliability. Refer also to
the STMicroelectronics SURE Program and other
relevant quality documents.
Table 4. Absolute Maximum Ratings
Note: 1. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assermbly), the ST ECOPACK
7191395 specification,
and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU.
2. Minimum DC voltage on Input or Output is 0.5V with possible undershoot to 2.0V for a period less than 20ns. Maximum DC
voltage on Output is V
CC
+0.5V with possible overshoot to V
CC
+2V for a period less than 20ns.
3. Depends on range.
Symbol
Parameter
Value
Unit
T
A
Ambient Operating Temperature
(3)
40 to 125
C
T
BIAS
Temperature Under Bias
50 to 125
C
T
STG
Storage Temperature
65 to 150
C
T
LEAD
Lead Temperature during Soldering
(note 1)
C
V
IO
(2)
Input or Output Voltage (except A9)
2 to 7
V
V
CC
Supply Voltage
2 to 7
V
V
A9
(2)
A9 Voltage
2 to 13.5
V
V
PP
Program Supply Voltage
2 to 14
V
M27C512
10/22
DC AND AC PARAMETERS
This section summarizes the operating and mea-
surement conditions, and the DC and AC charac-
teristics of the device. The parameters in the DC
and AC Characteristic tables that follow are de-
rived from tests performed under the Measure-
ment Conditions summarized in the relevant
tables. Designers should check that the operating
conditions in their circuit match the measurement
conditions when relying on the quoted parame-
ters.
Table 5. AC Measurement Conditions
Figure 7. Testing Input Output Waveform
Figure 8. AC Testing Load Circuit
Table 6. Capacitance
Note: 1. T
A
= 25C, f = 1MHz
2. Sampled only, not 100% tested.
High Speed
Standard
Input Rise and Fall Times
10ns
20ns
Input Pulse Voltages
0 to 3V
0.4V to 2.4V
Input and Output Timing Ref. Voltages
1.5V
0.8V and 2V
AI01822
3V
High Speed
0V
1.5V
2.4V
Standard
0.4V
2.0V
0.8V
AI01823B
1.3V
OUT
CL
CL = 30pF for High Speed
CL = 100pF for Standard
CL includes JIG capacitance
3.3k
1N914
DEVICE
UNDER
TEST
Symbol
Parameter
Test Condition
(1,2)
Min
Max
Unit
C
IN
Input Capacitance
V
IN
= 0V
6
pF
C
OUT
Output Capacitance
V
OUT
= 0V
12
pF
11/22
M27C512
Table 7. Read Mode DC Characteristics
Note: 1. V
CC
must be applied simultaneously with or before V
PP
and removed simultaneously or after V
PP
.
2. Maximum DC voltage on Output is V
CC
+0.5V.
Table 8. Read Mode AC Characteristics
Note: 1. V
CC
must be applied simultaneously with or before V
PP
and removed simultaneously or after V
PP
.
2. Sampled only, not 100% tested.
3. Speed obtained with High Speed AC measurement conditions.
Symbol
Parameter
Test Condition
(1)
Min
Max
Unit
I
LI
Input Leakage Current
0V
V
IN
V
CC
10
A
I
LO
Output Leakage Current
0V
V
OUT
V
CC
10
A
I
CC
Supply Current
E = V
IL
, G = V
IL
,
I
OUT
= 0mA, f = 5MHz
30
mA
I
CC1
Supply Current (Standby) TTL
E = V
IH
1
mA
I
CC2
Supply Current (Standby) CMOS
E > V
CC
0.2V
100
A
I
PP
Program Current
V
PP
= V
CC
10
A
V
IL
Input Low Voltage
0.3
0.8
V
V
IH
(2)
Input High Voltage
2
V
CC
+ 1
V
V
OL
Output Low Voltage
I
OL
= 2.1mA
0.4
V
V
OH
Output High Voltage TTL
I
OH
= 1mA
3.6
V
Output High Voltage CMOS
I
OH
= 100A
V
CC
0.7V
V
Symbol
Alt
Parameter
Test Condition
(1)
M27C512
Unit
-45
(3)
-60
-70
-80
Min
Max
Min
Max
Min
Max
Min
Max
t
AVQV
t
ACC
Address Valid to
Output Valid
E = V
IL
, G = V
IL
45
60
70
80
ns
t
ELQV
t
CE
Chip Enable Low to
Output Valid
G = V
IL
45
60
70
80
ns
t
GLQV
t
OE
Output Enable Low
to Output Valid
E = V
IL
25
30
35
40
ns
t
EHQZ
(2)
t
DF
Chip Enable High
to Output Hi-Z
G = V
IL
0
25
0
25
0
30
0
30
ns
t
GHQZ
(2)
t
DF
Output Enable
High to Output Hi-Z
E = V
IL
0
25
0
25
0
30
0
30
ns
t
AXQX
t
OH
Address Transition
to Output Transition
E = V
IL
, G = V
IL
0
0
0
0
ns
M27C512
12/22
Table 9. Read Mode AC Characteristics
Note: 1. V
CC
must be applied simultaneously with or before V
PP
and removed simultaneously or after V
PP
.
2. Sampled only, not 100% tested.
Figure 9. Read Mode AC Waveforms
Symbol
Alt
Parameter
Test Condition
(1)
M27C512
Unit
-90
-10
-12
-15/-20/-25
Min
Max
Min
Max
Min
Max
Min
Max
t
AVQV
t
ACC
Address Valid to
Output Valid
E = V
IL
, G = V
IL
90
100
120
150
ns
t
ELQV
t
CE
Chip Enable Low to
Output Valid
G = V
IL
90
100
120
150
ns
t
GLQV
t
OE
Output Enable Low
to Output Valid
E = V
IL
40
40
50
60
ns
t
EHQZ
(2)
t
DF
Chip Enable High
to Output Hi-Z
G = V
IL
0
30
0
30
0
40
0
50
ns
t
GHQZ
(2)
t
DF
Output Enable
High to Output Hi-Z
E = V
IL
0
30
0
30
0
40
0
50
ns
t
AXQX
t
OH
Address Transition
to Output Transition
E = V
IL
, G = V
IL
0
0
0
0
ns
AI00735B
tAXQX
tEHQZ
A0-A15
E
G
Q0-Q7
tAVQV
tGHQZ
tGLQV
tELQV
VALID
Hi-Z
VALID
13/22
M27C512
Table 10. Programming Mode DC Characteristics
Note: 1. T
A
= 25 C; V
CC
= 6.25V 0.25V; V
PP
= 12.75V 0.25V
2. V
CC
must be applied simultaneously with or before V
PP
and removed simultaneously or after V
PP
.
Symbol
Parameter
Test Condition
(1,2)
Min
Max
Unit
I
LI
Input Leakage Current
V
IL
V
IN
V
IH
10
A
I
CC
Supply Current
50
mA
I
PP
Program Current
E = V
IL
50
mA
V
IL
Input Low Voltage
0.3
0.8
V
V
IH
Input High Voltage
2
V
CC
+ 0.5
V
V
OL
Output Low Voltage
I
OL
= 2.1mA
0.4
V
V
OH
Output High Voltage TTL
I
OH
= 1mA
3.6
V
V
ID
A9 Voltage
11.5
12.5
V
M27C512
14/22
Table 11. Margin Mode AC Characteristics
Note: 1. T
A
= 25 C; V
CC
= 6.25V 0.25V; V
PP
= 12.75V 0.25V
2. V
CC
must be applied simultaneously with or before V
PP
and removed simultaneously or after V
PP.
Figure 10. Margin Mode AC Waveforms
Note: A8 High level = 5V; A9 High level = 12V.
Symbol
Alt
Parameter
Test Condition
(1,2)
Min
Max
Unit
t
A9HVPH
t
AS9
V
A9
High to V
PP
High
2
s
t
VPHEL
t
VPS
V
PP
High to Chip Enable Low
2
s
t
A10HEH
t
AS10
V
A10
High to Chip Enable High (Set)
1
s
t
A10LEH
t
AS10
V
A10
Low to Chip Enable High (Reset)
1
s
t
EXA10X
t
AH10
Chip Enable Transition to V
A10
Transition
1
s
t
EXVPX
t
VPH
Chip Enable Transition to V
PP
Transition
2
s
t
VPXA9X
t
AH9
V
PP
Transition to V
A9
Transition
2
s
AI00736B
tA9HVPH
tVPXA9X
A8
E
GVPP
A10 Set
VCC
tVPHEL
tA10LEH
tEXVPX
tA10HEH
A9
A10 Reset
tEXA10X
15/22
M27C512
Table 12. Programming Mode AC Characteristics
Note: 1. T
A
= 25 C; V
CC
= 6.25V 0.25V; V
PP
= 12.75V 0.25V
2. V
CC
must be applied simultaneously with or before V
PP
and removed simultaneously or after V
PP
.
3. Sampled only, not 100% tested.
Figure 11. Programming and Verify Modes AC Waveforms
Symbol
Alt
Parameter
Test Condition
(1,2)
Min
Max
Unit
t
AVEL
t
AS
Address Valid to Chip Enable Low
2
s
t
QVEL
t
DS
Input Valid to Chip Enable Low
2
s
t
VCHEL
t
VCS
V
CC
High to Chip Enable Low
2
s
t
VPHEL
t
OES
V
PP
High to Chip Enable Low
2
s
t
VPLVPH
t
PRT
V
PP
Rise Time
50
ns
t
ELEH
t
PW
Chip Enable Program Pulse Width (Initial)
95
105
s
t
EHQX
t
DH
Chip Enable High to Input Transition
2
s
t
EHVPX
t
OEH
Chip Enable High to V
PP
Transition
2
s
t
VPLEL
t
VR
V
PP
Low to Chip Enable Low
2
s
t
ELQV
t
DV
Chip Enable Low to Output Valid
1
s
t
EHQZ
(3)
t
DFP
Chip Enable High to Output Hi-Z
0
130
ns
t
EHAX
t
AH
Chip Enable High to Address Transition
0
ns
AI00737
tVPLEL
PROGRAM
DATA IN
A0-A15
E
GVPP
Q0-Q7
DATA OUT
tAVEL
tQVEL
tVCHEL
tVPHEL
tEHQX
tEHVPX
tELEH
tELQV
tEHAX
tEHQZ
VERIFY
VALID
VCC
M27C512
16/22
PACKAGE MECHANICAL
Figure 12. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline
Note: Drawing is not to scale.
Table 13. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data
Symbol
millimeters
inches
Typ
Min
Max
Typ
Min
Max
A
5.72
0.225
A1
0.51
1.40
0.020
0.055
A2
3.91
4.57
0.154
0.180
A3
3.89
4.50
0.153
0.177
B
0.41
0.56
0.016
0.022
B1
1.45
0.057
C
0.23
0.30
0.009
0.012
D
36.50
37.34
1.437
1.470
D2
33.02
1.300
E
15.24
0.600
E1
13.06
13.36
0.514
0.526
e
2.54
0.100
eA
14.99
0.590
eB
16.18
18.03
0.637
0.710
L
3.18
4.10
0.125
0.161
S
1.52
2.49
0.060
0.098
7.11
0.280
4
11
4
11
N
28
28
FDIPW-a
A3
A1
A
L
B1
B
e
D
S
E1
E
N
1
C
eA
D2
eB
A2
17/22
M27C512
Figure 13. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline
Note: Drawing is not to scale.
Table 14. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data
Symbol
millimeters
inches
Typ
Min
Max
Typ
Min
Max
A
4.445
0.1750
A1
0.630
0.0248
A2
3.810
3.050
4.570
0.1500
0.1201
0.1799
B
0.450
0.0177
B1
1.270
0.0500
C
0.230
0.310
0.0091
0.0122
D
36.830
36.580
37.080
1.4500
1.4402
1.4598
D2
33.020
1.3000
E
15.240
0.6000
E1
13.720
12.700
14.480
0.5402
0.5000
0.5701
e1
2.540
0.1000
eA
15.000
14.800
15.200
0.5906
0.5827
0.5984
eB
15.200
16.680
0.5984
0.6567
L
3.300
0.1299
S
1.78
2.08
0.070
0.082
0
10
0
10
N
28
28
PDIP
A2
A1
A
L
B1
B
e1
D
S
E1
E
N
1
C
eA
eB
D2
M27C512
18/22
Figure 14. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline
Note: Drawing is not to scale.
Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data
Symbol
millimeters
inches
Typ
Min
Max
Typ
Min
Max
A
3.18
3.56
0.125
0.140
A1
1.53
2.41
0.060
0.095
A2
0.38
0.015
B
0.33
0.53
0.013
0.021
B1
0.66
0.81
0.026
0.032
CP
0.10
0.004
D
12.32
12.57
0.485
0.495
D1
11.35
11.51
0.447
0.453
D2
4.78
5.66
0.188
0.223
D3
7.62
0.300
E
14.86
15.11
0.585
0.595
E1
13.89
14.05
0.547
0.553
E2
6.05
6.93
0.238
0.273
E3
10.16
0.400
e
1.27
0.050
F
0.00
0.13
0.000
0.005
R
0.89
0.035
N
32
32
PLCC-A
D
E3
E1 E
1 N
D1
D3
CP
B
E2
e
B1
A1
A
R
0.51 (.020)
1.14 (.045)
F
A2
E2
D2
D2
19/22
M27C512
Figure 15. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Outline
Note: Drawing is not to scale
Table 16. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
Max
Typ
Min
Max
A
1.250
0.0492
A1
0.200
0.0079
A2
0.950
1.150
0.0374
0.0453
B
0.170
0.270
0.0067
0.0106
C
0.100
0.210
0.0039
0.0083
CP
0.100
0.0039
D
13.200
13.600
0.5197
0.5354
D1
11.700
11.900
0.4606
0.4685
e
0.550
0.0217
E
7.900
8.100
0.3110
0.3189
L
0.500
0.700
0.0197
0.0276
0
5
0
5
N
28
28
TSOP-a
D1
E
1
N
CP
B
e
A2
A
N/2
D
DIE
C
L
A1
M27C512
20/22
PART NUMBERING
Table 17. Ordering Information Scheme
Note: 1. High Speed, see AC Characteristics section for further information.
For a list of available options (speed, package,
etc.) or for further information on any aspect of this
device, please contact your nearest ST Sales Of-
fice.
Example:
M27C512
-70
X
C
1
TR
Device Type
M27
Supply Voltage
C = 5V
Device Function
512 = 512 Kbit (64Kb x8)
Speed
-45
(1)
= 45 ns
-60 = 60 ns
-70 = 70 ns
-80 = 80 ns
-90 = 90 ns
-10 = 100 ns
-12 = 120 ns
-15 = 150 ns
-20 = 200 ns
-25 = 250 ns
V
CC
Tolerance
blank = 10%
X = 5%
Package
F = FDIP28W
B = PDIP28
C = PLCC32
N = TSOP28: 8 x 13.4 mm
Temperature Range
1 = 0 to 70 C
3 = 40 to 125 C
6 = 40 to 85 C
Options
Blank = Standard Packing
TR = Tape and Reel Packing
E = Lead-free and RoHS Package, Standard Packing
F = Lead-free and RoHS Package, Tape and Reel Packing
21/22
M27C512
REVISION HISTORY
Table 18. Revision History
Date
Version
Revision Details
November 1998
1.0
First Issue
25-Sep-2000
1.1
AN620 Reference removed
02-Apr-2001
1.2
FDIP28W mechanical dimensions changed (
Table 13.
)
29-Aug-2002
1.3
Package mechanical data clarified for PDIP28 (
Table 14.
),
PLCC32 (
Table 15.
,
Figure 14.
) and TSOP28 (
Table 16.
,
Figure 15.
)
08-Nov-2004
2.0
Details of ECOPACK lead-free package options added.
Additional Burn-in option removed
M27C512
22/22
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com